НАСТОЯЩАЯ ИСТОРИЯ БУДУЩЕГО
CHF PSEPHOS CHF
REFERENCES
Triangle UF begins
...
Triangle OF begins
Triangle VF begins
INITIALISATION
clear all
clc
tot = 19;
UF = [-1 0];
OF = [-1 +1];
VF = [ 0 +1];
ITERATION
for n = 1:tot
N(n) = n;
normo = n*(n+1)-0;
normi = n*(n+1)-1;
uf = UF; UF = [];
of = OF; OF = [];
vf = VF; VF = [];
PSEPHOS CONSTRUCTION BY REGULAR INSERTION
for i = 1:n
UF = [UF [-n+i-1 uf((n-1)*(i-1)+(1:n-1)) n-i] ];
OF = [OF [-n of((n-1)*(i-1)+(1:n-1)) n ] ];
VF = [VF [+0-i+1 vf((n-1)*(i-1)+(1:n-1)) i ] ];
end
UNIFORMITY OF UNREDUCED FAREY CIRCUMCISION
-----------
j = (0:1:n-1);
-----------
UNIFORMITY_UF(n,:) = [all(UF(n+1:(n+1):n*(n+1)) == n-j-1) all(UF(0+1:(n+1):n*(n+1)) == -n+j)];
UNIFORMITY_OF(n,:) = [all(OF(n+1:(n+1):n*(n+1)) == n ) all(OF(0+1:(n+1):n*(n+1)) == -n )];
UNIFORMITY_VF(n,:) = [all(VF(n+1:(n+1):n*(n+1)) == j+1 ) all(VF(0+1:(n+1):n*(n+1)) == -j )];
COMMON HOLISTIC FACTORS
UOV = gcd(UF,VF);
ADJACENCY
UF0 = UF; UF0(1) = []; UF1 = UF; UF1(end) = [];
OF0 = OF; OF0(1) = []; OF1 = OF; OF1(end) = [];
VF0 = VF; VF0(1) = []; VF1 = VF; VF1(end) = [];
UV_VU(n) = sum(UF0.*VF1 - VF0.*UF1);
SUMMI(n) = sum([VF.*normi-(0:normi).*OF]);
end
REGULAR FRACTIONS
II = (0:normi); regul = II./(normo); IO = II + 1;
PSEPHOS REDUCED FRACTIONS
pseph = VF./OF;
SUPERSYMMETRIC PSEPHOS
[II' UF' OF' VF'];
TOTIENT
TOTIENT = [1 diff(UV_VU)];
CONJECTURE TO BECOME A THEOREM
PSEPHOS_CONJECTURE = all(sum(abs(pseph-regul).^2) < 1./N );
UNIFORMITY
UNIFORMITY_OK = [all(UNIFORMITY_UF) all(UNIFORMITY_OF) all(UNIFORMITY_VF)];
CHF
for k = 1:normo;
I_(k) = ns_(k);
UF_(k) = ns_(UF(k));
OF_(k) = ns_(OF(k));
VF_(k) = ns_(VF(k));
if 1 == 0
zi = sign(OF(k));
draw_binm_(k) = zcmsm_to_zbinm_pasen_2023_(+abs(UF(k)).*1,+abs(VF(k)).*1);
draw_chfm_(k) = zcmsm_to_zchfm_pasen_2023_(+abs(UF(k))*zi,+abs(VF(k))*zi);
end
aUF = abs(UF(k));
aOF = abs(OF(k));
aVF = abs(VF(k));
CHRISTMATH FORMULA PASEN 2023
cofacto(k) = (4*min(aUF,aVF)-aOF).*(gcd(aUF,aOF) > 1);
coprime(k) = (4*min(aUF,aVF)-aOF).*(gcd(aUF,aOF) == 1);
formulo(k) = (4*min(aUF,aVF)-aOF);
coprime(k) = (4*min(aUF,aVF)-aOF).*(gcd(aUF,aOF) == 1)*tot*(tot+1);
cofacto(k) = (4*min(aUF,aVF)-aOF).*(gcd(aUF,aOF) > 1)*tot*(tot+1)+tot+(mod(tot,2) == 1);
formula(k) = (4*min(aUF,aVF)-aOF) *tot*(tot+1)+tot+(mod(tot,2) == 1);
end
FORMULA = sum(formula);
FORMULAcoprime = sum(coprime);
FORMULAcofacto = sum(cofacto);
[FORMULA FORMULAcoprime FORMULAcofacto];
PSEPHOS UNREDUCED FAREY COPRIME & COFACTO EQUILIBRIUM
EQUAL_COPRIME_COFACTO_SUMS = all(coprime + cofacto == formula);
totient = TOTIENT(tot);
cotient = tot-totient;
PLOT
if 1 == 1
figure(1); plot([ pseph' regul']); title("PSEPHOS EQUIDISTRIBUTION");
figure(2); plot([ pseph'-regul']); title("PSEPHOS EQUIDISTRIBUTION");
figure(3); plot(UF-VF,UF+VF,'b'); title("PSEPHOS EQUIDISTRIBUTION");
figure(4); plot(UOV./OF,'.'); title("COMMON HOLISTIC FACTORS");
EQUAL COPRIME & COFACTO SUMS
figure(5); hold on;
plot(+coprime,IO,'r.');
plot(-coprime,IO,'r.')
plot(-cofacto,IO,'b.');
plot(+cofacto,IO,'b.'); title("PASEN"); grid off; axis off;
end
chf ψηφ
KNOWLEDGE TREASURY BY PSEPHOS ENUMERATION
ψηφ chf